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A unified approach to variable selection
for Cox’s proportional hazards model
with interval-censored failure time data

Mingyue Du1, Hui Zhao2 and Jianguo Sun3

Abstract

Cox’s proportional hazards model is the most commonly used model for regression analysis of failure time data and

some methods have been developed for its variable selection under different situations. In this paper, we consider a

general type of failure time data, case K interval-censored data, that include all of other types discussed as special cases,

and propose a unified penalized variable selection procedure. In addition to its generality, another significant feature of

the proposed approach is that unlike all of the existing variable selection methods for failure time data, the proposed

approach allows dependent censoring, which can occur quite often and could lead to biased or misleading conclusions if

not taken into account. For the implementation, a coordinate descent algorithm is developed and the oracle property of

the proposed method is established. The numerical studies indicate that the proposed approach works well for practical

situations and it is applied to a set of real data arising from Alzheimer’s Disease Neuroimaging Initiative study that

motivated this study.
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1 Introduction

It is well known that Cox’s proportional hazards model is the most commonly used model for regression analysis

of failure time data and many methods have been developed for its inference under various situations.1–5

In particular, Cox1 proposed a partial likelihood approach for the situation of right-censored data. In this

paper, we discuss variable selection for the model when one faces a general type of failure time data, case K

interval-censored data, which include right-censored and many other types of data as special cases.6 By interval-

censored data, we mean that the failure time of interest is known or observed only to belong to a window or an

interval instead of being observed exactly or right-censored, and a general type of such data is the mixed or case K

interval-censored data where there exists a sequence of observation times for each subject. It is easy to see that

many medical studies such as clinical trials and medical follow-up studies can produce such data as well as many

others, such as studies in demography, economics and reliability.4,7

A great amount of literature has been developed for covariate or variable selection and this is especially the

case under the context of linear regression. In particular, many penalized procedures, which optimize an objective

function with a penalty function, has recently been developed, including the least absolute shrinkage and selection

operator (LASSO) procedure,8 the smoothly clipped absolute deviation (SCAD) procedure,9 the adaptive LASSO
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(ALASSO) procedure,10 the smooth integration of counting and absolute deviation (SICA) procedure,11 the

seamless-L0 (SELO) procedure,12 and the broken adaptive ridge (BAR) regression.13 A number of authors

have also discussed the variable selection for right-censored failure time data, and especially, Tibshirani,14 Fan

and Li,15 and Zhang and Lu16 generalized the LASSO, SCAD, and ALASSO penalty-based procedures, respec-

tively, to the Cox’s proportional hazards model situation.
For the variable selection based on interval-censored failure time data, two parametric procedures were devel-

oped in Scolas et al.17 and Wu and Cook,18 and in particular, the latter assumed that the baseline hazard function

is a piecewise function. Also Zhao et al.19,20 considered a special case of interval-censored data, case II interval-

censored data, and proposed a semiparametric procedure. Note that in terms of estimation and variable selection

on the proportional hazards model, one significant difference between right-censored data and interval-censored

data is that for the former, a simple partial likelihood function is available and commonly used as the objective

function in a penalized procedure, while there does not exist such function for the latter and one has to work with

a much more complicated objective function. Furthermore, a significant limitation for all of the variable

selection procedures mentioned above for failure time data is that they apply only to the independent censoring

situation. It is well known that sometimes the censoring, either right or interval censoring, may be informative and

for this case, the use of the methods that assume the independent censoring can lead to biased results or even

misleading conclusions.3,4 In addition, it is also much more complicated to deal with informative interval cen-

soring than informative right censoring as the former is a process and the latter can be simply characterized by a

random variable.
In the following, we will consider case K interval-censored failure time data and develop a general or unified

penalized variable selection procedure. In the proposed method, the sieve approach based on Bernstein poly-

nomials will be employed to approximate the unknown baseline cumulative hazard function and a two-step

estimation procedure will be developed. Also the latent variable will be used to describe the relationship between

the failure time of interest and the observation process, and thus the proposed approach has the advantage that it

allows dependent or informative censoring. In addition, it is flexible in that no distribution assumption is needed

for the latent variables. Of course, instead of Bernstein polynomials and the latent variable approach, one may

employ other smooth functions such as B-splines and the copula model approach, respectively, in the proposed

method and more comments on these are given below.
The remainder of the paper is organized as follows. We will begin in Section 2 with introducing some notation

and assumptions that will be used throughout the paper and then briefly discuss the method that would be used if

only estimation is of interest. In particular, we will assume that the failure time of interest follows the proportional

hazards model and a counting process is employed to describe the underlying censoring or observation process.

In Section 3, the proposed sieve penalized variable selection procedure will be presented and in the method, the

number of covariates is allowed to diverge with the sample size. For the implementation of the method, a coor-

dinate descent algorithm is developed, and the oracle property of the proposed procedure is established in Section

4. The proposed method can be applied with various penalty functions, although we will focus on the BAR

penalty function. Section 5 presents some results obtained from a simulation study conducted for the assessment

of the proposed method and they suggest that the method works well for practical situations. An application to a

motivated real study is provided in Section 6, and Section 7 contains some discussion and concluding remarks.

2 Notation, assumptions and estimation

Consider a failure time study that consists of n independent subjects and let Ti denote the failure time of interest

associated with subject i. Also for subject i, suppose that there exist a p-dimensional vector of covariate denoted

by zi and a sequence of observation time points denoted by Ui0 ¼ 0 < Ui1 < Ui2 < . . . < UiKi
, where Ki is a

random integer, i ¼ 1; . . . ; n. Define ~NiðtÞ ¼
XKi

j¼1
IðUij � tÞ and dij ¼ IðUi;j�1 < Ti � Ui;jÞ; i ¼ 1; . . . ; n; j ¼ 1;

. . . ;Ki. Then, ~NiðtÞ is a point process characterizing the observation process on subject i and jumps only at the

observation times. In the following, we will assume that the observed data have the form

fOi ¼ ðsi;Uij; dij; zi; j ¼ 1; . . . ;KiÞ; i ¼ 1; . . . ; ng

where si denotes a follow-up time for the ith subject that is assumed to be independent of Ti. That is, we only have

case K interval-censored data.
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To describe the covariate effect on Ti, suppose that for subject i, there exists a latent variable ui and given zi and

ui, Ti follows the proportional hazards frailty model

kiðtjzi; uiÞ ¼ k0ðtÞexpðxTi bÞ (1)

In the above, k0ðtÞ denotes an unknown baseline hazard function, xi ¼ ðui; zTi ÞT, and b ¼ ðb0; b1; . . . ; bpÞT are

unknown regression parameters. Furthermore, we will assume that given zi and ui, Ti and ~NiðtÞ are independent

and ~NiðtÞ is a nonhomogeneous Poisson process with the intensity function

kihðtjzi; uiÞ ¼ k0hðtÞexpðzTi aþ uiÞ (2)

Here k0hðtÞ denotes a completely unknown continuous baseline intensity function and a is a vector of regression

parameters as b. It is apparent that under models (1) and (2), the parameter b0 represents the extent of

the association between the failure time and the observation process. The two will be independent if b0 ¼ 0.

In addition, the positive value of b0 means that the failure time and the observations are positively correlated,

while the negative value of b0 means the negative association. Note that instead of one latent variable in the models

above, one could replace it by two correlated latent variables and the development below would be still valid.
If one is only interested in estimation of regression parameters, under the assumptions above, it would be

natural to employ the conditional likelihood function

Lðb;K0jui0sÞ ¼
Yn
i¼1

YKi

j¼1

ðexpð�K0ðUij�1ÞexpðxTi bÞÞ � expð�K0ðUijÞexpðxTi bÞÞÞdij � ðexpð�K0ðUiKi
ÞexpðxTi bÞÞÞ1�

PKi

j¼1
dij

8<
:

9=
;

given the ui
0s, where K0ðtÞ ¼

Z t

0

k0ðsÞds, the baseline cumulative hazard function. Of course, in general, the ui’s are

unknown and for this, Wang et al.6 proposed a two-step estimation procedure that employs the strength-

borrowing method discussed in Huang and Wang21 and replaces them by their estimators.

More specifically, let K0hðtÞ ¼
Z t

0

k0hðsÞds and assume that K0hðs0Þ ¼ 1, where s0 denotes the longest follow-up

time. Then Wang et al.6 suggested to estimate a by using the estimating equations

UðaÞ ¼
Xn
i¼1

~zi KiK̂
�1

0h ðsiÞ � EðeuiÞexpðzTi aÞ
� �

¼ 0

where ~zTi ¼ ð1; zTi Þ, and

K̂0hðtÞ ¼
Y
sðlÞ>t

1� dðlÞ
RðlÞ

 !

the estimation of K0h. Let â denote the estimator of a given by the estimating equation above. Then one can

naturally estimate ui by

ûi ¼ log
Ki

K̂0hðsiÞexpðzTi âÞ

( )

and estimate b and K0 by maximizing Lðb;K0jûi0sÞ.

3 Sieve penalized variable selection procedure

Now we consider both estimation and covariate selection with the focus on model (1). For this, motivated

by the discussion in the previous section, we propose to maximize the penalized estimated log-likelihood
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function

lpðb;K0jûi0sÞ ¼ logLðb;K0jûi0sÞ �
Xp
j¼1

pknðjbjjÞ

where pkn denotes a penalty function that depends on a tuning parameter kn > 0. For the penalty function, in the
following, we will consider several commonly used ones, including the LASSO,14 ALASSO,16 SCAD,9 SICA,11

SELO12 and BAR22 penalty functions.
Note that for the maximization of lpðb;K0jûi0sÞ, one challenge will be that lpðb;K0jûi0sÞ involves the infinite-

dimensional function K0. To deal with this, by following others,5 we propose first to employ the sieve approach to
approximate K0 by using Bernstein polynomials. More specifically, let

H ¼ f� ¼ ðb;K0Þ 2 B�Mg

denote the parameter space of �, where B ¼ fbjb 2 Rp; jjbjj � Mg with M being a positive constant and M is the
collection of all bounded and continuous nondecreasing, non-negative functions over the interval ½c; u�
with 0 � c < u < 1. In practice, ½c; u� is usually taken as the range of observed data. Furthermore, define the
sieve space

Hn ¼ f�n ¼ ðb;K0nÞ 2 B�Mng

where

Mn ¼ K0nðtÞ ¼
Xm
k¼0

/�
kBkðt;m; c; uÞ :

X
0�k�m

j/�
kj � Mn; 0 � /�

0 � /�
1 � . . . � /�

m

( )

with Mn being a constant and

Bkðt;m; c; uÞ ¼ Ck
m

t� c

u� c

� �k

1� t� c

u� c

� �m�k

; k ¼ 0; . . . ;m

which are Bernstein basis polynomials of degree m ¼ oðnsÞ for some s 2 ð0; 1Þ. Note that Mn controls the size of

the sieve space and is usually chosen as Mn ¼ oðnaÞ with a 2 ð0; 1Þ.23 The value of m can be chosen by the cross-
validation method, and in practice, one may perform grid search over some possible range of m or fix m to be the

closest integer to n0:25.19 Note that here Bernstein polynomials are chosen simply because of their natural mono-
tone property and simplicity. Instead it is apparent that one could alternatively use other smooth functions such as

B-spline functions and the proposed method could be similarly developed.
By focusing on the sieve spaceHn, one can rewrite the penalized estimated log-likelihood function lpðb;K0jûi0sÞ as

lpðb;/�jûi0sÞ ¼
Xn
i¼1

XKi

j¼1

dijlogðexpð�K0nðUi;j�1Þexpðx̂T
i bÞÞ � expð�K0nðUijÞexpðx̂T

i bÞÞÞ � ð1�
XKi

j¼1

dijÞK0nðUiKi
Þexpðx̂T

i bÞ
8<
:

9=
;�

Xp
j¼1

pknðjbjjÞ

where x̂i ¼ ðûi; zTi ÞT. Note that due to the non-negative and non-decreasing constraint of the cumulative baseline

hazard function K0, in the maximization above, the constraint 0 � /�
0 � /�

1 � . . . � /�
m is required but it can be

easily removed by the reparameterization /�
0 ¼ e/0 ;/�

k ¼
Xk

i¼0
e/i ; 81 � k � m. To maximize lpðb;/jûi0sÞ, we will

employ an alternative algorithm given below that estimates b and / alternately. In particular, we will use the
Nelder-Mead simplex algorithm to update the estimator of / given the current estimator of b and then update the

estimator of b by employing the coordinate descent algorithm while fixing the /. Specifically,

Step 1. Choose the initial values b̂
ð0Þ

and /̂
ð0Þ

for both b and /.

Step 2. At the kth iteration, given the current b̂
ðk�1Þ

, obtain /̂
ðkÞ

by using the Nelder-Mead simplex algorithm.
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Step 3. Given the current estimate of /̂
ðkÞ
, update the estimate of b by using the coordinate descent algorithm

or update each element of b by maximizing lpðb; /̂ðkÞjûi0sÞ while holding the other elements of b fixed.

Step 4. Repeat steps 2 and 3 until convergence.

Note that the algorithm above can apply to any penalty function. On the other hand, one may employ an

alternative for the BAR penalty pknðjbjjÞ ¼ knb
2
j =
~b
2

j with ~bj denoting a nonzero “good” estimate of bj. More

specifically, one can use the ridge regression estimator

b̂
ð0Þ ¼ argmax

b

lpðbjûÞ � nn
Xp
j¼1

b2j

( )
(3)

as the initial value b̂
ð0Þ

and then update b̂
ðk�1Þ

iteratively by the following reweighed L2-penalized estimator

b̂
ðkÞ ¼ argmax

b

lpðbjûÞ � kn
Xp
j¼1

b2j

b̂
ðk�1Þ
j

� �2
8><
>:

9>=
>;

In equation (3), nn denotes another nonnegative tuning parameter to be discussed below.
Note that the coordinate algorithm described above is essentially to conduct univariate maximization for each

element of b vector repeatedly, and for each univariate maximization, one can use the golden-section search
algorithm24 or Newton-Raphson algorithm. In the numerical studies reported below, the algorithm seems to work
well and we did not have any convergence issues. On the covariate selection, at the convergence, we will set the
estimates of the components of b whose values are less than a pre-specified threshold of zero. For the numerical
studies reported below, we used the threshold of 10�6 by following Wang et al.25 and 0 as the initial values for
both b and / by following Fan and Lv26 and Lin and Lv.27 Also for numerical study below, we implement the
Nelder-Mead algorithm by using the R function optim and employ the R function optimize for the implementation
of the golden-section search algorithm.

To implement the variable selection procedure described above, it is apparent that one needs to choose the two
tuning parameters kn and nn. For this, by following others, we suggest to use the C-fold cross-validation, which the
numerical study below indicated works well. Also as pointed out by others and shown in the numerical study, the
BAR-based approach is not sensitive to nn and thus it can be taken to be a constant. Specifically, let C be an
integer and suppose that the observed data can be divided into C non-overlapping parts with approximately the
same size. Also let lc denote the observed log-likelihood function based on the cth part of the whole data set and
b̂
�c

and /̂
�c

the proposed sieve penalized estimates of b and /, respectively, obtained based on the whole data
without the cth part. For given kn, the cross-validation statistics can be defined as

CVðknÞ ¼
XC
c¼1

lc b̂
�c
; /̂

�c
� �

and one can choose the value of kn that maximizes CVðknÞ.

4 Asymptotic properties

Now we discuss the oracle property of the variable selection procedure described in the previous sections with the

focus on the use of the BAR penalty function. Let b̂ ¼ limk!1 b̂
ðkÞ

denote the BAR estimator given by the

procedure above and b0 ¼ ðb0;0; b0;1; . . . ; b0;pÞT the true value of b. Without loss of generality, assume that we

can write b0 ¼ ðbT01; bT02ÞT, where b01 is a qþ 1 vector consisting of b0;0 and all q (q � p) nonzero components and

b02 the remaining zero components. Correspondingly, we denote the BAR estimator of b as b̂ ¼ ðb̂T1 ; b̂
T

2 ÞT. In the

following, we assume that p< n but p and q can diverge or increase with the sample size n.
To establish the oracle property of the BAR estimator, we need the following regularity conditions.
(C1). (i) The set B is a compact subset of Rpþ1 and b0 is an interior point of B. (ii) The matrix Eðx̂x̂TÞ is non-

singular with x̂ being bounded. That is, there exists x̂0 > 0 such that Pðjjx̂jj � x̂0Þ ¼ 1.
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(C2). The function K0ð	Þ is continuously differentiable up to order r in ½u; v� and satisfies a�1 < K0ðuÞ < K0ðvÞ <
a for some positive constant a.

(C3). There exists a compact neighborhood B0 of the true value b0 and a positive definite ðpþ 1Þ � ðpþ 1Þ
matrix Iðb0Þ such that

sup
b2B0

jj � n�1€lnðbÞ � Iðb0Þjj!a:s: 0

where €lnðbÞ is the second derivative of lpðbjûÞ.
(C4). There exists some constant C> 1 such that C�1 < kminðIðb0ÞÞ � kmaxðIðb0ÞÞ < C for sufficiently large n,

where kminð	Þ and kmaxð	Þ denote the smallest and largest eigenvalues of the matrix, respectively.
(C5). There exist positive constants a0 and a1 such that a0 � jb0;jj � a1; 1 � j � q.

(C6). As n ! 1; p2q=
ffiffiffi
n

p ! 0; kn=
ffiffiffi
n

p ! 0; nn=
ffiffiffi
n

p ! 0, kn
ffiffiffiffiffiffiffiffi
q=n

p ! 0 and k2n=ðp
ffiffiffi
n

p Þ ! 1.

Conditions (C1) to (C3) are necessary for the existence and consistence of the sieve estimator of K0ðtÞ and
usually satisfied in practice. Condition (C4) assumes that Iðb0Þ is positive definite almost surely and its eigenvalues
are bounded away from zero and infinity, and Condition (C5) assumes that the nonzero coefficients are uniformly
bounded away from zero and infinity. Condition (C6) gives some sufficient but not necessary conditions needed to

prove the numerical convergence and asymptotic properties of the BAR estimator b̂. To establish the oracle

property, for a vector of h1 and given b1, define Qn1ðh1Þ ¼ Qn1ðh1jb1Þ ¼ lp1ðh1Þ � knh
T
1D1ðb1Þh1, where lp1ðh1Þ ¼

lpðh1; 0jûi0sÞ and D1ðb1Þ ¼ diagf0; b�2
1 ; . . . ; b�2

q g. Then the oracle property can be described as follows with the

proof given in Appendix 1.

Theorem 1. Assume that the regularity conditions (C1) to (C6) described above hold. Then as n ! 1 and with
probability tending to 1, the BAR estimator b̂ ¼ ðb̂T1 ; b̂

T

2 ÞT exists and has the following properties:
(i) b̂2 ¼ 0.
(ii) b̂1 is the unique fixed point of fðb1Þ, where fðb1Þ is a solution to _Qn1ðh1Þ ¼ 0, wherein _Qn1ðh1Þ is the first

derivative of Qn1ðh1Þ.
(iii)

ffiffiffi
n

p ðb̂1 � b01Þ converges in distribution to the multivariate normal distribution Nqþ1ð0; I1ðb0Þ�1Þ, where I1ðb0Þ
denotes the up-left ðqþ 1Þ � ðqþ 1Þ submatrix of Iðb0Þ.

5 A simulation study

In this section, we present some results obtained from an extensive simulation study conducted to assess the
performance of the variable selection approach proposed in the previous sections. In the study, we first generated
the covariates zi’s from the multivariate normal distribution with mean zero, variance one, and the correlation
between zj and zk being qjj�kj with q ¼ 0:5; j; k ¼ 1; . . . ; p, and the latent variables ui’s through assuming that u�i ¼
expðuiÞ follows the gamma distribution with mean 4 and variance 8. The failure times of interest were then
generated from model (1) with K0ðtÞ ¼ t or K0ðtÞ ¼ t2 and it was assumed that the si0s follow the uniform
distribution over the interval ½3; 4�.

For the observation process, it was supposed that ~NiðtÞ follows model (2) with k0h ¼ 1=4. Then, given zi, ui and
si, Ki, the number of observation times for subject i was generated from the Poisson distribution with mean

Kihðsijzi; uiÞ ¼ siexpðzTi aþ uiÞ
4

and the observation times ðUi1; . . . ;UiKi
Þ were taken to be the order statistics of a random sample of size Ki from

the uniform distribution over ð0; siÞ; i ¼ 1; 2; . . . ; n. The results given below are based on n¼ 100 or 300 with 100
replications.

Table 1 presents the results obtained on the covariate selection with n¼ 100 or 300, p¼ 8, b ¼
ð0:2; 1; 1; 0; 0; 0; 0; 0; 1ÞT, and all components of a being 0.1. In the table, we calculated the median (MMSE) of
the mean weighted squared errors (MSE) defined to be ðb̂� � b�ÞTRðb̂� � b�Þ with b� ¼ ðb1; . . . ; bpÞ and the
standard deviation (SD) of the MSE, where R denotes the covariance matrix of the covariates given at the
beginning of this section. Also, we computed the average number of the correctly selected covariates whose
true coefficient are not zero (TP) and the average number of incorrectly selected covariates whose true coefficients
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are zero (FP). Here we considered six penalty functions, LASSO, ALASSO, SCAD, SELO, SICA, and BAR, and

for the results, we took m, the degree of Bernstein polynomials, to be 3. For the selection of the tuning parameter

kn, the 5-fold cross-validation based on the grid search was used, and for nn in the BAR penalty, we set nn ¼ 100

since, as mentioned above, the results are not sensitive to the choice of nn.
The results given in Table 2 were obtained in the same way as above except that n¼ 300, p¼ 30 or p¼ 50, b ¼

ð0:2; 1; 1; 0p�4; 1; 1ÞT or ð0:2; 1; 1; 1; 1; 0p�8; 1; 1; 1; 1ÞT. Table 3 gives the results obtained under the same set-up as

that used for Table 2 expect that K0ðtÞ ¼ t2. One can see from Tables 1 to 3 that the proposed procedure seems to

perform well no matter which penalty function was used, especially in terms of TP, measuring the true positive

selection. In terms of MMSE and FP, measuring the false positive selection, as expected, the proposed methods

with ALASSO, SCAD, SELO, SICA and BAR seem to give better performance than with LASSO.
Note that in the proposed variable selection procedure, it has been assumed that the observation process

follows the non-homogeneous Poisson process and it is apparent that sometimes this may not be true. To

assess the robustness of the procedure with respect to the assumption, we repeated the study above in the

same way except generating the observation times from a renew process. More specifically, the gap times were

set to be 4expð�zia� uiÞvi with vi generated from the uniform distribution over ½0; 2� until the summation of the

generated gap times being larger than si. Table 4 gives the results obtained under the set-up similar to that in

Table 1 with n¼ 300 and p¼ 8, and one can see that they gave similar conclusions as before. We also considered

other set-ups and obtained similar results.

Table 2. Simulation results with n¼ 300, p¼ 30 or 50 and K0(t)¼ t.

Penalty MMSE(SD) TP FP

p¼ 30

LASSO 0.305(0.152) 4 7.55

ALASSO 0.149(0.134) 4 2.67

SCAD 0.060(0.196) 4 0.51

SELO 0.067(0.178) 3.97 0.18

SICA 0.063(0.204) 3.98 0.39

BAR 0.078(0.102) 4 0.33

p¼ 50

LASSO 1.215(0.586) 8 13.14

ALASSO 0.403(0.454) 8 4.32

SCAD 0.262(1.313) 7.99 0.10

SELO 0.292(0.493) 7.90 0.12

SICA 0.313(0.499) 7.87 0.13

BAR 0.215(0.267) 8 0.45

Table 1. Simulation results with n¼ 100 or 300 and, p¼ 8 and K0(t)¼ t.

Penalty MMSE(SD) TP FP

n¼ 100

LASSO 0.283(0.450) 3 2.07

ALASSO 0.232(0.687) 3 0.79

SCAD 0.183(0.983) 2.97 0.39

SELO 0.193(1.145) 2.81 0.27

SICA 0.233(0.883) 2.83 0.29

BAR 0.142(0.757) 3 0.20

n¼ 300

LASSO 0.093(0.073) 3 2.20

ALASSO 0.061(0.077) 3 0.67

SCAD 0.040(0.070) 3 0.24

SELO 0.038(0.173) 2.98 0.22

SICA 0.040(0.169) 2.97 0.13

BAR 0.039(0.053) 3 0.24
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6 An application

Now we apply the methodology proposed in the previous sections to a set of real data arising from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), a longitudinal follow-up study that started in 2004 and

was designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and track-

ing of the Alzheimer’s disease (AD). In the study, the participants were examined periodically for their AD status

and the collection of related information and also were initially grouped based on their cognitive conditions into

three groups, cognitively normal, mild cognitive impairment and Alzheimer’s disease. Among others, one variable

of interest is the time (in year) from the baseline visit date to the AD conversion. As expected, many patients

dropped out of the study early and some missed their scheduled visits. Thus, the patients have different obser-

vation times and only case K interval-censored data are available on the AD conversion time.
For the analysis here, by following Li et al.,28 we will consider 292 participants with mild cognitive impairment

initial status and for whom the information on 24 covariates is complete to identify important prognostic factors

for the AD conversion. These 24 demographic and clinical covariates were identified as possible important factors

associated with the AD conversion by Li et al.,28 who considered a similar problem by performing a simple or

individual analysis. In addition to the information on the covariates, the observed data for each participant

include the number of observations Ki, the observation times Uij’s, and the event indicators dij’s. For the analysis
results given below, as in the simulation study, we considered six penalty functions, LASSO, ALASSO, SCAD,

SICA, SELO and BAR. Also, as in the previous section, the 5-fold cross-validation was used to select the optimal

kn with setting nn ¼ 100 and m¼ 3, the degrees of freedom for the Bernstein polynomial approximation.
Table 5 presents the selection results and for the selected covariates, it also gives the estimated covariate effects

along with the estimated standard errors, given in the parentheses and obtained by using the bootstrap procedure

with 100 bootstrap samples randomly drawn with replacement from the data. One can see from the table that six

Table 3. Simulation results with n¼ 300, p¼ 30 or 50 and K0(t)¼ t2.

Penalty MMSE(SD) TP FP

p¼ 30

LASSO 0.277(0.181) 4 7.16

ALASSO 0.114(0.149) 4 3.31

SCAD 0.044(0.261) 4 0.26

SELO 0.048(0.267) 3.96 0.10

SICA 0.049(0.186) 3.98 0.17

BAR 0.044(0.074) 4 0.27

p¼ 50

LASSO 1.468(0.910) 8 13.65

ALASSO 0.364(0.998) 8 5.38

SCAD 0.200(0.906) 7.94 0.15

SELO 0.208(0.994) 7.89 0.10

SICA 0.202(0.909) 7.95 0.14

BAR 0.191(0.358) 8 0.39

Table 4. Simulation results with n¼ 300, p¼ 8 and the renew observation
process.

Penalty MMSE(SD) TP FP

LASSO 0.134(0.096) 3 2.26

ALASSO 0.059(0.089) 3 0.59

SCAD 0.045(0.126) 3 0.43

SELO 0.055(0.144) 2.99 0.30

SICA 0.046(0.187) 2.97 0.24

BAR 0.048(0.101) 3 0.34
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factors, Age, APOE-�4, ADAS13, RAVLT.i, FAQ and MidTemp, seem to have had some significant prognostic

effects on the AD conversion, and two factors, Marital status and Fusiform, were not selected by any penalty

function. Also three factors, CDR-SB, Hippocampus and ICV, were selected by all penalty functions and may

have some mild effects on the AD conversion. The conclusions above are similar to those given by the previous

simplified or single variable analyses.28

7 Discussion and concluding remarks

This paper discussed the variable or covariate selection problem when one faces a general type of failure time data

and a unified variable selection procedure was proposed under the Cox’s proportional hazards model. The pro-

posed penalized approach can accommodate any penalty function and makes use of the sieve approach. Unlike

the existing variable selection procedures for failure time data, one major advantage of the approach is that it

allows for the dependent or informative censoring, which can easily occur in medical studies as well as other

studies and it has been shown to cause biased estimation or misleading inference conclusions if not taken into

account. For the implementation, a coordinate descent algorithm was developed and the proposed procedure with

the use of the BAR penalty function was shown to have the oracle property. In addition, the numerical studies

indicated that the proposed approach works well for practical situations.
A main contribution of the proposed variable selection procedure is that it applies to various types of failure

time data, including right-censored data and case II interval-censored data.20 As discussed above, although right-

censored data and interval-censored may seem to be similar, the latter has much more complicated structures and

thus their analysis is also much more difficult than the former. For example, with the former, a partial likelihood

function is available for regression analysis under the proportional hazards model, and in contrast, one has to

work with some complex full likelihood functions for the latter. In terms of the censoring or observation process,

for the former, it can simply be described by one censoring variable, while one has to use and deal with two

censoring variables or a stochastic process for the latter.
Note that the proposed approach is essentially a two-step procedure in terms of estimation of models (1) and

(2) or parameters. Instead of this, one may consider an alternative method that makes use of the observed full

likelihood function as the objective function in the proposed penalized procedure. It is easy to see that this would

Table 5. Variable selection results in ADNI study.

Covariate LASSO ALASSO SCAD SELO SICA BAR

Age �0:229ð0:110Þ �0:228ð0:154Þ �0:279ð0:153Þ �0:362ð0:172Þ �0:356ð0:178Þ �0:322ð0:152Þ
Gender –(–) �0:221ð0:238Þ �0:383ð0:287Þ –(–) –(–) –(–)

Years of education 0:041ð0:094Þ 0:031ð0:083Þ 0:088ð0:099Þ –(–) –(–) 0:077ð0:110Þ
Marital status –(–) –(–) –(–) –(–) –(–) –(–)

APOE-�4 0:265ð0:134Þ 0:419ð0:168Þ 0:467ð0:182Þ –(–) –(–) 0:471ð0:170Þ
CDR-SB 0:095ð0:109Þ 0:172ð0:163Þ 0:203ð0:150Þ 0:123ð0:127Þ 0:099ð0:127Þ 0:211ð0:177Þ
ADAS11 0:106ð0:132Þ –(–) 0:132ð0:230Þ –(–) –(–) –(–)

ADAS13 0:176ð0:135Þ 0:365ð0:266Þ 0:099ð0:121Þ 0:327ð0:132Þ 0:372ð0:147Þ 0:276ð0:173Þ
ADASQ4 0:033ð0:101Þ –(–) 0:085ð0:137Þ –(–) –(–) –(–)

MMSE �0:087ð0:096Þ –(–) �0:091ð0:128Þ –(–) –(–) �0:126ð0:124Þ
RAVLT.i �0:294ð0:139Þ �0:337ð0:222Þ �0:394ð0:257Þ �0:469ð0:219Þ �0:437ð0:228Þ �0:577ð0:212Þ
RAVLT.l –(–) 0:286ð0:209Þ 0:401ð0:232Þ –(–) –(–) 0:231ð0:269Þ
RAVLT.f –(–) �0:368ð0:276Þ �0:485ð0:313Þ –(–) –(–) –(–)

RAVLT.p.f 0:101ð0:235Þ 0:547ð0:307Þ 0:649ð0:374Þ –(–) –(–) 0:142ð0:328Þ
DIGITSCOR –(–) –(–) �0:0800:114 –(–) –(–) –(–)

TRABSCOR 0:012ð0:094Þ –(–) –(–) –(–) –(–) –(–)

FAQ 0:181ð0:122Þ 0:316ð0:163Þ 0:317ð0:181Þ 0:273ð0:163Þ 0:205ð0:179Þ 0:358ð0:198Þ
Ventricles –(–) –(–) �0:053ð0:172Þ –(–) –(–) –(–)

Hippocampus �0:242ð0:168Þ �0:086ð0:192Þ �0:172ð0:230Þ �0:283ð0:233Þ �0:433ð0:263Þ �0:070ð0:182Þ
WholeBrain –(–) –(–) 0:004ð0:193Þ –(–) –(–) –(–)

Entorhinal �0:114ð0:123Þ �0:233ð0:151Þ �0:264ð0:192Þ �0:253ð0:188Þ –(–) �0:306ð0:165Þ
Fusiform –(–) –(–) –(–) –(–) –(–) –(–)

MidTemp �0:408ð0:163Þ �0:604ð0:247Þ �0:576ð0:238Þ �0:545ð0:278Þ �0:527ð0:323Þ �0:652ð0:228Þ
ICV 0:205ð0:140Þ 0:321ð0:215Þ 0:420ð0:262Þ 0:312ð0:218Þ 0:292ð0:227Þ 0:311ð0:254Þ
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be much more complicated in terms of implementation and also it would be much more difficult to establish the
asymptotic properties of the resulting variable selection procedure. In addition, unlike the proposed approach,
one would need to make some assumptions about the distribution of the latent variables.

In the preceding sections, the focus has been on the proportional hazards model and it is apparent that
sometimes a different model may be preferred or more appropriate such as the additive hazards model or the
linear transformation model. It is easy to see that the idea discussed above can still be applied to these situations
but the development of a new implementation algorithm may be needed and also the derivation of the asymptotic
property of the resulting variable selection approach may be different. To describe the correlation between the
failure time variable of interest and the observation process, the latent variable approach was employed above and
as mentioned before, an alternative is to employ the copula model approach.5,29,30 One advantage of the latter is
that it allows for the direct estimation of the association but it usually requires more assumptions that cannot
usually be verified based on available information.
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Appendix 1. Proof of Theorem 1

In this appendix, we will sketch the proof of Theorem 1. For this and also the completeness, we will first describe

the regularity conditions needed for the asymptotic properties of K̂0hðtÞ and â and the properties.
(A1) For the follow-up time s and latent variable u, we have Pðs 
 s0; expðuÞ > 0Þ > 0.
(A2) The covariate z is uniformly bounded.
(A3) For the latent variable u, the variance of expðuÞ is bounded and there exists a positive small constant � > 0

such that expðuÞ > � almost surely.
(A4) Also for s and u, the function GðsÞ ¼ E½expðuÞIðs 
 sÞ� is continuous for s 2 ½0; s0�.
It has been pointed out 6;21 that if the regularity conditions (A1) to (A4) hold, then as n ! 1 and with

probability tending to 1, K̂0hðtÞ and â are consistent and possess the asymptotical normality. Hence, one can

treat the functions of the ui’s as the ones as if the ui’s were observed and rewrite model (1) as

kiðtjx̂iÞ ¼ k0ðtÞexpðx̂T
i bÞ (4)

To prove Theorem 1, we need the following three lemmas.

Lemma 1. (Consistency of the ridge estimator). Let bridge denote the ridge estimator defined in (3) and suppose that

the conditions (C1) to (C6) hold. Then we have that

jjbridge � b0jj ¼ Opð
ffiffiffiffiffiffiffiffi
p=n

p
Þ (5)

Proof. Denote

LðbÞ ¼ lpðbjûÞ � nn
Xp
j¼1

b2j ;

an ¼ max
1�j�q

fj _pnnðb0jÞj : b0j 6¼ 0g;
bn ¼ max

1�j�q
fj€pnnðb0jÞj : b0j 6¼ 0g
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For ridge regression, we can see that pnnðb0jÞ ¼ b20jnn=n for j ¼ 1; . . . ; p. Thus the first and second derivatives of
pnnðb0jÞ are _pnnðb0jÞ ¼ 2b0jnn=n and €pnnðb0jÞ ¼ 2nn=n respectively. From Conditions (C5) and (C6), we have that
an � 2a1nn=n ¼ oðn�1=2Þ and bn � 2nn=n ¼ oðn�1=2Þ. Therefore an ! 0 and bn ! 0.

Let an ¼ ffiffiffi
p

p ðn�1=2 þ anÞ, then using the similar manipulation as those in Cai et al.,31 we can prove that, for any
given � > 0, there exists a large constant C0 such that

P sup
jjvjj¼C0

Lðb0 þ anvÞ < Lðb0Þ
� �


 1� �

which implies that there exists a local maximiser, bridge, such that jjbridge � b0jj ¼ Opð
ffiffiffiffiffiffiffiffi
p=n

p Þ: �

To describe Lemma 2, for a vector of h and given b, define

QnðhÞ � Qnðh; b; ûÞ ¼ lpðhjûÞ � knh
TDðbÞ h

where DðbÞ ¼ diagf0; b�2
1 ; . . . ; b�2

p g. Then the first and second derivatives of QnðhÞ are

_QnðhÞ ¼ _lpðhjûÞ � 2knDðbÞh (6)

and

€QnðhÞ ¼ €lpðhjûÞ � 2knDðbÞ (7)

Lemma 2. Suppose gðbÞ ¼ ðg1ðbÞT; g2ðbÞTÞT is a solution to _QnðhÞ ¼ 0 and let fdng be a sequence of positive real

numbers satisfying dn ! 1 and d2np=kn ! 0. Furthermore, define Hn � fb ¼ ðbT1 ; bT2 ÞT : jb1j ¼ ðjb0j;
jb1j; . . . ; jbqjÞT 2 ½1=K0;K0�qþ1; jjb2jj � dn

ffiffiffiffiffiffiffiffi
p=n

p g, where K0 > 1 is a constant such that jb01j 2 ½1=K0;K0�qþ1. Then

under the regularity conditions (C1) to (C6) and with probability tending to 1, we have that

(i) supb2Hn

jjg2ðbÞjj
jjb2jj < 1

C0
for some constant C0 > 1;

(ii) gð	Þ is a mapping from Hn to itself.

Proof. Taking the first-order Taylor expansion for _QnðhÞ at b0 in a neighborhood of gðbÞ, we have that

_Qnðb0Þ ¼ _QnðgðbÞÞ þ €Qnðb�Þðb0 � gðbÞÞ

where b0 is the true parameter vector, and b� lies between b0 and gðbÞ. Then

€Qnðb�ÞgðbÞ ¼ � _Qnðb0Þ þ €Qnðb�Þb0

since _QnðgðbÞÞ ¼ 0. Substituting equations (6) and (7) to the above equation, we have

1

n
€lpðb�jûÞ � 2kn

n
DðbÞ

	 

gðbÞ ¼ 1

n
€lpðb�jûÞb0 �

1

n
_lpðb0jûÞ (8)

Denote Hnðb�Þ ¼ � 1
n
€lpðb�jûÞ and from (C3), Hnðb�Þ�1 exists. Then multiplying both sides of (8) by Hnðb�Þ�1

gðbÞ � b0 þ
2kn
n

Hnðb�Þ�1DðbÞgðbÞ ¼ 1

n
Hnðb�Þ�1 _lpðb0jûÞ (9)

Partition Hnðb�Þ�1 and DðbÞ into

Hnðb�Þ�1 ¼ A B
BT G

� �
and DðbÞ ¼ D1ðb1Þ 0

0 D2ðb2Þ
� �

where A is a ðqþ 1Þ � ðqþ 1Þ matrix, D1ðb1Þ ¼ diagf0; b�2
1 ; . . . ; b�2

q g and D2ðb2Þ ¼ diagfb�2
qþ1; . . . ; b

�2
p g. Then

equation (9) can be rewritten as
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g1ðbÞ � b01
g2ðbÞ

� �
þ 2kn

n

AD1ðb1Þg1ðbÞ þ BD2ðb2Þg2ðbÞ
BTD1ðb1Þg1ðbÞ þ GD2ðb2Þg2ðbÞ

� �
¼ 1

n
Hnðb�Þ�1 _lpðb0jûÞ (10)

By arguments similar to those in Theorem 1 of Cai et al.,31 Conditions (C1) to (C6) guarantee that
jj 1nHnðb�Þ�1 _lpðb0jûÞjj ¼ Opð

ffiffiffiffiffiffiffiffi
p=n

p Þ, therefore

sup
b2Hn

����g2ðbÞ þ 2kn
n

BTD1ðb1Þg1ðbÞ þ
2kn
n

GD2ðb2Þg2ðbÞ
���� ¼ Opð

ffiffiffiffiffiffiffiffi
p=n

p
Þ (11)

Note that jb1j 2 ½1=K0;K0�qþ1; jjg1ðbÞjj � jjgðbÞjj � jjb̂jj ¼ Opð ffiffiffi
p

p Þ, and furthermore, from

jjBBTjj � jjA2jj � jjBBT þ A2jj � jjHnðb�Þ�2jj < C2

we can derive jjBjj � ffiffiffi
2

p
C and

sup
b2Hn

���� 2knn BTD1ðb1Þg1ðbÞ
���� � 2kn

n
sup
b2Hn

kBTkkD1ðb1Þkkg1ðbÞk ¼ opð
ffiffiffiffiffiffiffiffi
p=n

p
Þ (12)

then equation (11) can be rewritten as

sup
b2Hn

����g2ðbÞ þ 2kn
n

GD2ðb2Þg2ðbÞ
���� ¼ Opð

ffiffiffiffiffiffiffiffi
p=n

p
Þ (13)

At the same time

2kn
n

kGD2ðb2Þg2ðbÞk 
 2kn
n

1

C
kD2ðb2Þg2ðbÞjj (14)

and thus

2kn
n

1

C
jjD2ðb2Þg2ðbÞjj � jjg2ðbÞjj � sup

b2Hn

����g2ðbÞ þ 2kn
n

GD2ðb2Þg2ðbÞ
���� � dnð

ffiffiffiffiffiffiffiffi
p=n

p
Þ (15)

Let mg2ðbÞ=b2 ¼ ðg2ðbqþ1Þ=bqþ1; g2ðbqþ2Þ=bqþ2; . . . ; g2ðbpÞ=bpÞT, then

g2ðbÞ ¼ D2ðb2Þ�1=2mg2ðbÞ=b2

Furthermore, it follows from the Cauchy-Schwarz inequality and the assumption jjb2jj � dn
ffiffiffiffiffiffiffiffi
p=n

p
that

1

C

���� 2knn D2ðb2Þg2ðbÞ
���� 
 2kn

nC

ffiffiffi
n

p
dn

ffiffiffi
p

p jjmg2ðbÞ=b2 jj (16)

and
jjg2ðbÞjj ¼ jjðD2ðb2ÞÞ�1=2mg2ðbÞ=b2 jj � jjmg2ðbÞ=b2 jj 	 jjb2jj � jjmg2ðbÞ=b2 jjdn

ffiffiffiffiffiffiffiffi
p=n

p
(17)

By equations (15), (16) and (17), we have the following inequality

2kn
nC

ffiffiffi
n

p
dn

ffiffiffi
p

p jjmg2ðbÞ=b2 jj �
dn

ffiffiffi
p

pffiffiffi
n

p jjmg2ðbÞ=b2 jj �
dn

ffiffiffi
p

pffiffiffi
n

p

Immediately from pd2n=kn ! 0, we have
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jjmg2ðbÞ=b2 jj �
1

2kn
pd2nC

� 1
<

1

C0
; ðC0 > 1Þ

with probability tending to 1. Hence with probability tending to 1

jjg2ðbÞjj � jjb2jjjjmg2ðbÞ=b2 jj �
1

C0
jjb2jj as n ! 1

which implies that conclusion (i) holds and jjg2ðbÞjj � dn
ffiffiffiffiffiffiffiffi
p=n

p
with probability tending to 1.

To prove (ii), we only need to verify that jjg1ðbÞ � b01jj � dn
ffiffiffiffiffiffiffiffi
p=n

p
with probability tending to 1. Analogously,

from equation (10), we have

sup
b2Hn

���� 2knn AD1ðb1Þg1ðbÞ
���� ¼ opð

ffiffiffiffiffiffiffiffi
p=n

p
Þ

and

sup
b2Hn

����g1ðbÞ � b01 þ
2kn
n

BD2ðb2Þg2ðbÞ
���� ¼ Opð

ffiffiffiffiffiffiffiffi
p=n

p
Þ � dn

ffiffiffiffiffiffiffiffi
p=n

p

Again by equation (15) and Condition (C4), we know that as n ! 1 and with probability tending to 1

sup
b2Hn

k 2kn
n

BD2ðb2Þg2ðbÞk � Cðjjg2ðbÞjj þ dn
ffiffiffiffiffiffiffiffi
p=n

p
ÞjjBjj � 2

ffiffiffi
2

p
C2dn

ffiffiffiffiffiffiffiffi
p=n

p

Since

kg1ðbÞ � b01k �
2kn
n

kBD2ðb2Þg2ðbÞk � sup
b2Hn

����g1ðbÞ � b01 þ
2kn
n

BD2ðb2Þg2ðbÞ
����;

then

sup
b2Hn

kg1ðbÞ � b01k � ð2
ffiffiffi
2

p
C2 þ 1Þdn

ffiffiffiffiffiffiffiffi
p=n

p
! 0

with probability tending to 1, which implies that for any � > 0; Pðjjg1ðbÞ � b01jj � �Þ ! 1. Thus, it follows from
b01 2 ½1=K0;K0�qþ1 that g1ðbÞ 2 ½1=K0;K0�qþ1 holds for large n, which implies that conclusion (ii) holds. This
completes the proof. �

Since b02 ¼ 0, we can express the objective function of this reduced model as

Qn1ðh1Þ ¼ lp1ðh1Þ � knh
T
1D1ðb1Þh1 (18)

Lemma 3. Let fðb1Þ be a solution to _Qn1ðh1Þ ¼ 0, then under regularity conditions (C1) to (C6) and with probability
tending to 1

(i) fðb1Þ is a contraction mapping from ½1=K0;K0�qþ1 to itself;
(ii)

ffiffiffi
n

p ðb̂o1 � b01Þ!D Nð0; I1ðb0Þ�1Þ, where b̂
o

1 is the unique fixed point of fðb1Þ and I1ðb0Þ is the leading ðqþ 1Þ �
ðqþ 1Þ submatrix of Iðb0Þ.

Proof. (i) Similar as the derivation of equation (9), through the first-order Taylor expansion, we have that

fðb1Þ � b01 þ
2kn
n

Hn1ðb�1Þ�1D1ðb1Þfðb1Þ ¼
1

n
Hn1ðb�1Þ�1 _lp1ðb01Þ (19)
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where Hn1ðb�1Þ ¼ �n�1€lp1ðb�1Þ and b�1 lies between b01 and fðb1Þ. From n�1 _lp1ðb01Þ ¼ Opðq=nÞ, we know that

sup
jb1j2½1=K0;K0�qþ1

����fðb1Þ � b01 þ
2kn
n

Hn1ðb�1Þ�1D1ðb1Þfðb1Þ
���� ¼ Opð

ffiffiffiffiffiffiffiffi
q=n

p
Þ

By (C4) and similar as the proof process of Lemma 2, we have that

sup
jb1j2½1=K0;K0�qþ1

���� 2knn Hn1ðb�1Þ�1D1ðb1Þfðb1Þ
���� ¼ opð

ffiffiffiffiffiffiffiffi
q=n

p
Þ

Thus, with the probability tending to 1

sup
jb1j2½1=K0;K0�qþ1

jjfðb1Þ � b01jj � dn
ffiffiffiffiffiffiffiffi
q=n

p
! 0

which implies that Pffðb1Þ 2 ½1=K0;K0�qþ1g ! 1 as n ! 1. That is, fðb1Þ is a mapping from ½1=K0;K0�qþ1 to itself.
Next to prove fðb1Þ is a contraction mapping, we need show that supjb1j2½1=K0;K0�qþ1 jj _fðb1Þjj ¼ opð1Þ:

From _Qn1ðfðb1ÞÞ ¼ 0 we have

_lp1ðfðb1ÞÞ ¼ 2knD1ðb1Þfðb1Þ (20)

Taking the derivative with respect to bT1 on both sides of equation (20) and rearranging terms, we obtain that

2kn
n

D1ðb1Þ þHn1ðfðb1ÞÞ
	 


_fðb1Þ ¼
4kn
n

fðb1Þdiagð0; b�3
1 ; . . . ; b�3

q Þ (21)

where _fðb1Þ ¼ @fðb1Þ=@b1T. From the fact that kn=
ffiffiffi
n

p ! 0; jjfðb1Þjj and jjb1jj are bounded, we have

sup
jb1j2½1=K0;K0�qþ1

4kn
n

kfðb1Þdiagð0; b�3
1 ; . . . ; b�3

q Þk ¼ opð1Þ

Again, since

1=K2
0jj _fðb1Þjj � jjHn1ðfðb1ÞÞ _fðb1Þjj � K2

0jj _fðb1Þjj

and

1=Cjj _fðb1Þjj � jjD1ðb1Þ _fðb1Þjj � Cjj _fðb1Þjj

and from equation (21), we can reach the conclusion that

sup
jb1j2½1=K0;K0�qþ1

jj _fðb1Þjj ¼ opð1Þ

which implies that fð	Þ is a contraction mapping from ½1=K0;K0�qþ1 to itself with probability tending to 1. Hence,

according to the contraction mapping theorem, there exists one unique fixed-point b̂
o

1 2 ½1=K0;K0�qþ1 such that

fðb̂o1Þ ¼ b̂
o

1:
(ii) From equation (19) we have fðb1Þ ¼ ½Hn1ðb�1Þ þ 2kn

n D1ðb1Þ��1½Hn1ðb�1Þb01 þ 1
n
_lp1ðb01Þ�. Denote Uðb̂o1Þ ¼

½Hn1ðb�1Þ þ 2kn
n D1ðb̂o1Þ��1, then we have
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b̂
o

1 ¼ fðb̂o1Þ ¼ Uðb̂o1ÞHn1ðb�1Þb01 þ
1

n
Uðb̂o1Þ _lp1ðb01Þ�

and

ffiffiffi
n

p
Hn1ðb�1Þ1=2ðb̂

o

1 � b01Þ ¼
ffiffiffi
n

p
Hn1ðb�1Þ1=2fUðb̂

o

1ÞHn1ðb�1Þ � Iqþ1gb01
þ 1ffiffiffi

n
p Hn1ðb�1Þ1=2Uðb̂

o

1Þ _lp1ðb01Þ
¼ P1 þP2

with P1 ¼
ffiffiffi
n

p
Hn1ðb�1Þ1=2fUðb̂

o

1ÞHn1ðb�1Þ � Iqþ1gb01 and P2 ¼ 1ffiffi
n

p Hn1ðb�1Þ1=2Uðb̂
o

1Þ _lp1ðb01Þ:
Furthermore, it follows from Woodbury matrix identity and Condition (C6) that

jjP1jj ¼ 2knffiffiffi
n

p jjHn1ðb�1Þ�
1
2D1ðb̂o1ÞUðb̂

o

1ÞHn1ðb�1Þb01jj �
2knffiffiffi
n

p K2
0jjHn1ðb�1Þ

1
2jjjjb01jj ¼ opð1Þ

Similarly using Woodbury matrix identity to P2, we have

jjP2jj ¼ 1ffiffiffi
n

p Hn1ðb�1Þ�1=2

(
aIqþ1 � 2kn

n
D1ðb̂o1ÞUðb̂

o

1Þ
9=
; _lp1ðb01Þ

¼ 1ffiffiffi
n

p Hn1ðb�1Þ�1=2 _lp1ðb01Þ �
2knffiffiffi
n

p Hn1ðb�1Þ�1=2D1ðb̂o1ÞUðb̂
o

1Þ
1

n
_lp1ðb01Þ ¼

1ffiffiffi
n

p Hn1ðb�1Þ�1=2 _lp1ðb01Þ þ opð1Þ
! Nqþ1ð0; Iqþ1Þ

Therefore,
ffiffiffi
n

p ðb̂o1 � b01Þ ! Nqþ1ð0;Hn1ðb�1Þ�1Þ. �

Proof of Theorem 1. (i) According to the definitions of the BAR estimator b̂ and Lemma 1 and Lemma 2(i), we
have that

b̂2 ¼ lim
k!1

g2ðb̂ðkÞÞ ¼ 0

holds with the probability tending to 1.

(ii) Since b̂1 ¼ limk!1 g1ðb̂ðkÞÞ, next we should show that

Pð lim
k!1

jjg1ðb̂ðkÞÞ � b̂
o

1jj ¼ 0Þ ! 1

where b̂
o

1 is the unique fixed point of fðb1Þ defined in Lemma 3.
According to the definition of gðbÞ; gðbÞ ¼ ðg1ðbÞT; g2ðbÞTÞT is the solution of _QnðhÞ ¼ 0, that is, g1ðbÞ is the

solution of _Qn1ðh1Þ ¼ 0 and g2ðbÞ is the solution of _Qn2ðh2Þ ¼ 0.
From (i) we can see that limb2!0 g2ðb; b1; b2Þ ¼ 0, and thus limb2!0 g1ðb; b1; b2Þ ¼ fðb1Þ holds. Also, for any

b̂
ðkÞ
2 ; gðb; b1; b̂

ðkÞ
2 Þ is a mapping of b1, and with k ! 1 and probability tending to 1, we have that

gk � sup
g1ðbÞ2½1=K0;K0�qþ1

kfðb1Þ � g1ðb; b1; b̂
ðkÞ
2 Þk ! 0 (22)

On the other hand, since fð	Þ is a contraction mapping, there exists a constant C1 > 1 such that

jjfðb̂ðkÞ1 Þ � b̂
o

1jj ¼ jjfðb̂ðkÞ1 Þ � fðb̂o1Þjj �
1

C1
jjb̂ðkÞ1 � b̂

o

1jj (23)

Let hk ¼ jjb̂ðkÞ1 � b̂
o

1jj, then it follows from equations (22) and (23) that
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hkþ1 ¼ jjb̂ðkþ1Þ
1 � b̂

o

1jj � jjg1ðb̂ðkÞÞ � fðb̂ðkÞ1 Þjj þ jjfðb̂ðkÞ1 Þ � b̂
o

1jj � gk þ
1

C1
hk

From equation (22), for any � 
 0, there exists N> 0 such that when k>N, 0 � gk < �.
Employing some recursive calculation, we have hk ! 0 as k ! 1. Hence, with probability tending to 1, we have

jjb̂ðkÞ1 � b̂
o

1jj ! 0 as k ! 1
Since b̂1 � limk!1 b̂

ðkÞ
1 , it follows from the uniqueness of the fixed-point that

Pðb̂1 ¼ b̂
o

1Þ ! 1; k ! 1
(iii) The asymptotic normality of b̂1 follows from part (ii) of Lemma 3. �
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